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Reducing overall household energy consumption through the application of information and communication
technologies (ICT) can play an important role in the transformation towards sustainable consumption patterns,
e.g. through the optimisation of energy-consuming processes. The challenge in the environmental assessment of
ICT applications is to also consider their use-specific environmental effects, as these can be decisive for overall re-
sults. Using the example of smart heating, we therefore analyse the environmental performance of a sample of
375 smart home systems (SHS) in Germany and show how the life cycle assessment (LCA) can be extended to
include various use-specific effects such as choice of products and individuals' behaviourwhenusing the product.
In an interdisciplinary study design, we combine life cycle modelling and behavioural science to systematically
include use-specific parameters into the modelling, and to interweave these results with user characteristics
such as sociodemographics and user motivation. Our results are heterogenous: For the impact category Climate
Change (GWP) we find that having smart heating can lead to large savings in particular cases. On average, how-
ever, smart heating does not lead to significant benefits for GWP, but neither does it represent an additional bur-
den. For Metal Depletion Potential (MDP), we find that smart heating is always an additional burden, as heating
optimisation has almost no reduction potential forMDP. Our results have awide range due to large differences in
use patterns in the sample. Depending on the impact category, both number of devices of the SHS as well as
heating temperature are decisive. Regression analysis of our assessment results with user characteristics shows
that differences in MDP and GWP of SHS size can be explained by income, and, in addition, differences in GWP
of net heating energy savings can be explained by user motivation. Our results thus underline that the standard
scenarios for user behaviour assumed in LCAmodelling should bewell justified. Future interdisciplinary research
should further explore the links betweenuse-specific approaches in LCA and users' environmental behaviour and
motivation.
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1. Introduction

Information and communication technology (ICT)1 has the potential
to reduce resource and energy demand (Sui and Rejeski, 2002). By using
ICT-based services, either processes and thus resources and energy use
can be optimised, or the fulfilment of a goal/function can be achieved
with alternative, less resource-intensive (digital) products, services or
; GWP - Climate Change; ICT -
ycle assessment; MDP - Metal
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processes (Pohl et al., 2019). Examples span from the substitution of tra-
ditional with digital media (Amasawa et al., 2018), over forms of
telework (Vaddadi et al., 2020) and new types of consumption (van
Loon et al., 2015) to digital process management (Gangolells et al.,
2016). Also in households, the application of ICT-based services can
play an important role in the transformation towards sustainable con-
sumption patterns (Börjesson Rivera et al., 2014). The role of ICT for re-
ducing environmental effects of processes and services has also been
addressed in earlier literature reviews. For example, with a focus on in-
direct energy effects of ICT, Horner et al. (2016) review studies on e-
commerce, e-materialisation and telework. Hook et al. (2020) examine
the energy and climate effects of teleworking.Wilson et al. (2020) focus
on digital consumer innovations and their emission reduction potential
in areas such as mobility, food or energy. It follows that net
rved.
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environmental benefits from the application of ICT-based services are
not a priori certain: its application may also lead to an intensification
of resource and energy use. On the one hand, this may be due to the
fact that an environmental mitigation effect is not an integral part of
the service, and thus its operation leads to an increase in electricity de-
mand (Røpke et al., 2010). On the other hand, it may be due to
counteracting environmental effects from the application of the respec-
tive services, which may exceed the service's optimisation effects
(Horner et al., 2016). Hence, user behaviour plays a particular role in
the environmental performance of ICT-based services (Bieser and
Hilty, 2018).

More precise insights into the role of user behaviour for the overall
environmental performance of household appliances can be gained
from other disciplines. From a social science perspective, Gram-
Hanssen (2013) investigates socio-technical factors that have an influ-
ence on residential energy demand. Based on empirical and statistical
data, the author identifies four factors that are decisive for overall en-
ergy demand: number and size of the appliances, energy efficiency of
the technology itself, and related user behaviour. In the case of heating,
behavioural aspects are at least as important as the energy efficiency of
the technology itself, and in the case of electricity consumption number
and use of appliances in the household are particularly relevant. Socio-
demographic factors like age, income and education may also play a
role in both heat and electricity consumption (Gram-Hanssen, 2013).
Other studies show that factors such as user motivation and values
(Nilsson et al., 2018), personal beliefs (Girod et al., 2017) and intentions
(Ahn et al., 2016) influence the use of appliances and their effects on
residential energy consumption. However, regarding individuals' envi-
ronmental impact, Moser and Kleinhückelkotten (2018) show that in-
come plays a greater role than environmentally friendly intentions.
Changes in energy demand related to theway the SHS is used is also ex-
amined from the perspective of user adoption of new technologies. In
addition to the identification of social barriers that hinder SHS adoption
(Balta-Ozkan et al., 2013), this also includes questions about acceptabil-
ity & usability, user needs (Wilson et al., 2015) and domestication pro-
cesses (Gram-Hanssen andDarby, 2018; Hargreaves andWilson, 2017).
For example, Hargreaves et al. (2018) show that forms of adaptation
also include using only some or none of the features offered by the
SHS, which could lead to the technical energy saving potential of the
SHS not being fully realised. Chang and Nam (2021) find, however,
that the intention to use smart home services is particularly high
among those who prefer energy control services. Sovacool et al.
(2021) find conflicting practices regarding energy savings and empha-
sise the link between knowledge about the SHS and its acceptance
and diffusion. From thesefindings, it can be concluded that a holistic en-
vironmental assessment that covers effects along products' life cycles as
well as their application and use is essential.

With regard to life cycle assessment (LCA), integration of variances
in user behaviour is repeatedly cited as one of themost urgent method-
ological challenges (Finkbeiner et al., 2014; Hellweg and Milà i Canals,
2014). However, a systematic exploration of use-specific aspects and
their inclusion into the LCA is still in its infancy (Pohl et al., 2019).
Often, poor availability of data is cited as a reason (Börjesson Rivera
et al., 2014; Gradin and Björklund, 2021;Miller and Keoleian, 2015). An-
other reason is that LCA studies often focus on the narrow product sys-
tem (Kjaer et al., 2016) and apply standardised default use phase
modelling. Thus, variations in product application are ignored (Geiger
et al., 2018). In order to integrate these use-specific aspects into the
LCA, both a solid understanding of user behaviour in the specific context
(Polizzi di Sorrentino et al., 2016), and a theoretical concept of how
these aspects can be better integrated into the LCA (Pohl et al., 2019)
are necessary. More specifically, as shown in previous research, defini-
tions of goal and scope are crucial when integrating use-specific aspects
into the LCA: For instance, in order to integrate aspects of prolonged
product service life into the LCA, Proske and Finkbeiner (2020) show
the importance of defining goal, functional unit (FU) and system
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boundaries. Likewise, Pohl et al. (2021) highlight that definitions of
product system, system boundaries and FU are crucial when integrating
user decisions such as choice of devices and services into the environ-
mental assessment. In order to use LCA to address rebound effects or
shifts in consumption patterns from circular economy initiatives,
Niero et al. (2021) state that the scope definition is of central
importance.

In our study we investigate the environmental performance of ICT-
based services, focusing on the interlinkages between variances in
user behaviour in LCA and further interferences between the user, the
product(s) and the surrounding environment. We do this by analysing
the environmental performances of a sample of 375 smart home sys-
tems (SHS) that include smart heating in Germany. The research-
guiding question is: How do variances in user behaviour influence the
environmental performance of the SHS? More specifically, and based
on our survey, i) we consider and compare LCA of 375 SHS in
Germany that differ in number and size of SHS components, and in
SHS settings; and ii) we examine whether our environmental assess-
ment results can be predicted by sociodemographics or usermotivation.

Our structure is as follows: In Section 2, we briefly present the state
of research on the interplay of user behaviour and environmental as-
sessment and identifymethodological barriers in current LCAmodelling
practice. On this basis, in Section 3 we present the interdisciplinary
methodology underlying our study on the environmental performance
of SHS. In Section 4, we present our results for the impact categories Cli-
mate Change (GWP) and Metal Depletion (MDP) and analyse whether
they can be explained by sociodemographic information and user moti-
vation. We discuss relevant findings with regard to use-specific model-
ling in Section 5 and conclude with implications for future LCA
modelling in Section 6.

2. Literature review

On a theoretical level, various authors stress the importance of user
behaviour in LCA. Suski et al. (2021) suggest a framework that combines
LCA with social practice theory when assessing sustainable consump-
tion and helps to define relevant system boundaries by identifying rele-
vant social practices and their interconnectedness. A similar approach is
taken by Niero et al. (2021) for addressing socio-technical dynamics
when implementing Circular Economy initiatives. Pohl et al. (2021) de-
scribe the systematic inclusion of user decision and behaviour in envi-
ronmental modelling based on three use-specific parameters:
(i) choice of products in number and size (product parameters); (ii)
use frequency and intensity (use parameters); and (iii) socio-
demographic information on the user, all of which can have a decisive
influence on products' environmental performance. To assess the con-
sumption behaviour of a human being over their lifetime, Goermer
et al. (2020) propose a methodological framework that includes both
changes in consumption patterns during lifetime and environmental ef-
fects from consumedproducts throughout the product life cycle. Central
to all proposals is the shift from an exclusively product-centric focus in
the LCA to a service or consumption focus.What has played little role in
these concepts so far is the use of information about users other than so-
ciodemographics, e.g. information on lifestyle or user motivation to fur-
ther characterise LCA results (see e.g. Moser and Kleinhückelkotten,
2018; Wiedmann et al., 2020).

Several case studies include variances in use patterns into their
modelling. However, these differ with respect to the goal definition:
(i) influence of user behaviour on the environmental performance of
products is either investigated only as a boundary condition; or (ii)
user behaviour is addressed as relevant to product use when assessing
the environmental impact of a product; or (iii) the study directly focuses
on the environmental impact of different types of user behaviour on the
overall results. For example, Achachlouei andMoberg (2015) use sensi-
tivity analysis to identify the impact on intensity of use of both tablet de-
vice and print editions of a Swedish magazine. However, such studies
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focus mainly on the environmental effects of production, and differ-
ences in user behaviour are considered only as a boundary condition
(Achachlouei and Moberg, 2015). Amasawa et al. (2018) investigate to
what extent changes in book reading activities impact on GWP when
comparing paper book and e-book reading. Investigations of reading ac-
tivities show that substitution is rarely complete and that both paper
books and e-books are read, which significantly alters results
(Amasawa et al., 2018). Ross and Cheah (2017) investigate how energy
use in air conditioning systems depends on different use patterns and
show that variances in use patterns can significantly determine the
overall result for GWP.

Studies further differ in terms of types of use patterns that are in-
cluded. Taking the example of three case studies, Daae and Boks
(2015) analyse which and how variances in user behaviour are cur-
rently addressed in LCA. Depending on the type of product, the authors
identify variations in the interaction with the product with regard to
(i) handling of the product (Solli et al., 2009); (ii) frequency of use
(O'Brien et al., 2009); and, (iii) duration (Samaras and Meisterling,
2008). Furthermore, choice of (by-)products and/or product settings
(Shahmohammadi et al., 2019, 2017) can be identified as a forth type
of product interaction. In addition, the way the FU is defined varies
greatly, highlighting the different degree of focus on the product or
product use within the study. These refer either to the use of a certain
quantity of a product, e.g. “one wash cycle” (Shahmohammadi et al.,
2017), or to the use of the product over a certain period of time, e.g. “de-
livery and viewing of one year's worth of BBC television” (Schien et al.,
2021). Reference to the user or the household is very rarely made in
the definition of the FU, e.g. “book reading activities per person”
(Amasawa et al., 2018) or “110 m2 apartment space in Germany man-
aged (monitored and controlled) for 5 years” (Pohl et al., 2021).
Bossek et al. (2021) refrain from defining a FU at all and use ‘reporting
unit’ instead (“life of a human being”). It becomes apparent that not
all definitions here allow for inclusion of secondary effects of product
use, i.e. intensification of use or expansion of products used, and that
comparability across studies may be limited for very specific FU defini-
tions. One solution to this could be the sound definitions of goal and FU
that play a prominent role when it comes to integrating user behaviour
into an LCA. For a detailed overview of themethodological choices of all
the studies identified here, see Table S1, supplementary material 1.

3. Methods

This study investigates the influence of user behaviour on the envi-
ronmental performance of SHS. In the following section, we outline
the underlying methods and operationalisation. We first give defini-
tions for the key terms ‘smart home’, and ‘user behaviour’, and then ex-
plain how our interdisciplinary study design was conceptualised and
how and where life cycle modelling and the online survey intertwine.

3.1. Definitions, conceptualisation and operationalisation

The term ‘smart home’ summarises networked applications in the
home. Depending on the device composition of the SHS, these applica-
tions provide a variety of services in the home, such as security, energy
management or comfort (Strengers and Nicholls, 2017). From an envi-
ronmental perspective, applications for room temperature control,
lighting control or optimisation of overall energy consumption can
play a role in reducing overall energy consumption in the household
(Urban et al., 2016). Smart heating in particular provides some of the
greatest potential for energy savings (Beucker et al., 2016). The environ-
mental performance of an SHS is determined from the actual savings of
energy optimisation, while accounting for resource demand due to pro-
duction and operation of the SHS (life cycle effects) and changed user
behaviour (Pohl et al., 2021).

The term ‘user behaviour’ describes a variety of behavioural interac-
tionswith a product/system. These include choice of products, theuser's
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subsequent behaviour when using the product, and – at the end of the
product life cycle – the decision on how to dispose of the product (see
Polizzi di Sorrentino et al., 2016). The behavioural sciences, especially
environmental psychology, have a long tradition of predicting pro-
environmental behaviour, especially energy saving, but also investment
behaviour. They find that some behaviour is mainly predicted by socio-
economic factors (impact-oriented), whereas other behaviour is better
predicted by motives (intent-oriented) (see Geiger et al., 2018). For
LCA modelling, it is particularly relevant that user behaviour not only
manifests itself during the use phase of a product, but also includes
choice of products, services and settings.

In the following section, we will analyse the ICT-based service of
smart heating, i.e. we will focus on SHS with smart heating. To break
down how and to what extent user behaviour may affect the environ-
mental performance of an SHS, we apply the conceptual model “The
user perspective in LCA” (Pohl et al., 2021). The use-specific parameters
that we have included into the modelling are shown in Fig. 1. Their in-
tegration in the LCA and operationalisation in the survey are
summarised in Table 1.

Smart heating devices and SHS infrastructure are at the centre of our
product system. Other SHS components that are used in parallel with
smart heating devices are also included in the product system. Our
model also considers whether these devices were newly acquired/re-
placed or were already in place. The type of connection the SHS uses
(WiFi, other radiofrequency) is also considered. Heating energydemand
is affected by applying the smart heating function in twoways: through
heating optimisation and through changes in heating behaviour in the
home (i.e. variations in the number of rooms that are heated and differ-
ences in the temperature level). Since the SHS is operated within an
existing and occupied living space, additional information about the liv-
ing space as well as the people living there can play a role in the context
of the system's environmental impact. Information on building type,
size of living space and type of heating system is used to calculate
total energy savings due to the application of the SHS. Information on
sociodemographics and user motivation is used ex post for regression
analyses. With this, we want to investigate whether the results from
our environmental assessment can be explained by user characteristics.
We base our analysis on a previous study by Pohl et al. (2021) and use
the sample and inventory data from that study.

3.2. Online survey

The online survey is used to collect (i) primary data from the user
about their individual SHS composition, heating behaviour, and housing
situation; and (ii) further information on user characteristics, such as in-
formation on sociodemographics and user motivation.

3.2.1. Survey sample & procedure
First, the 8149 potential participants who opened the survey link

were askedwhether they use a SHSwith smart heating control (screen-
ing). Of these, 644 people (7.9%) confirmed that they used this type of
SHS and completed the entire questionnaire. Because 269 participants
were excluded due to inconsistent responses or missing information,
the final sample size was N = 375. The final sample compared to the
total of potential participants is roughly equivalent to the percentage
of 5.3% smart home users in Germany at the data collection period
(Statista, 2019). The high exclusion rate can be explained by the fact
that, especially in online surveys and when using a screening question
that includes only a small number of people, the number of
misreporting is particularly high (Chandler and Paolacci, 2017).We dis-
cuss this high exclusion rate in more detail in our adjacent publication
(Frick and Nguyen, 2021). The questionnaire consisted of five sections:
It startedwithquestions about theparticipants'motivations for using an
SHS. Then followed questions about the SHS composition (number of
devices, type of connection) and about housing specifics (e.g. living
space, source of heating energy). This was followed by questions on



Fig. 1. Conceptualisation: how user behaviour impacts on the environmental performance of a SHS. Use-specificmodelling parameters aremarked in green (ownwork, adapted fromPohl
et al., 2021). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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heating behaviour (temperature levels in sleeping and living rooms,
daytime and night-time). At the end of the survey, sociodemographic
information was obtained. As we use the sample from a previous
study by Pohl et al. (2021), detailed description of survey sample and
procedure can be found in that study. The online survey questions are
provided in supplementary material 2. The quality of the questionnaire
was ensured by discussing itwith experts in thefield and testing and re-
vising it with a convenient sample of few participants.

3.2.2. User motivation
The different dimensions of the motivation to use the SHS were

created based on the Consumption Motivation Scale by Barbopoulos
and Johansson (2017). A shortened version with 21 items adapted to
SHS was developed, assessing the original seven consumption motives
(for details see Frick and Nguyen, 2021). On a five-point Likert scale,
the participants stated how strong their different motives were to use
the SHS. Frick and Nguyen (2021) applied cluster analysis to identify
four distinct user motives in the smart home: energy-saving, security,
technology enthusiasm and consumerism. The energy-saving motive
summarises the financial and environmental benefits of energy saving
of the SHS. The six items measuring the motive showed high reliability
(Cronbach's α = .88). The security motive covers the aspects of
Table 1
Use-specific information, their operationalisation in the survey and integration in the LCA.

Use-specific
information

Operationalisation in the
survey

Integration in the LCA

Primary data for LCA modelling
Smart heating
component

Number of devices Definition of product system

Other SHS
components
(system
expansion)

Device type and number
of devices

Type of connection WiFi or other type of
connection

Acquisition of SHS
components

New acquisition of devices
[new/replaced/kept in
use]

Scope: production phase from
devices already in place is
excluded

Heating behaviour Room temperature [day
and night; sleeping and
living rooms]

Additional expenditures in the
model (see Pohl et al., 2021 for
details)

Housing specifics Building type
[apartment/house], living
space, type of heating fuel

Proportional heating energy
savings due to the SHS
application (see Pohl et al., 2021
for details)

User characteristics for regression analyses
Sociodemographic
information

Gender, income, education
of SHS users

Ex post: relationship of
assessment results with
sociodemographic information

User motivation Consumption Motivation
Scale by Barbopoulos and
Johansson (2017)

Ex post: relationship of
assessment results with user
motives
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protection or control over the apartment/house (α = .89). Technology
enthusiasm includes the pleasure of using the product, as well as com-
fort as a reduction of (physical) effort (α= .83). The consumerismmo-
tive describes the will to consume goods that serve the purpose of
establishing identity, social acceptance and recognition, but also hedo-
nistic need satisfaction (α = .89).

3.3. Life cycle assessment

The environmental impact of each SHS is assessed by performing an
LCA based on ISO 14040 (2006).

3.3.1. Aim and scope
The aim of the LCA is to assess the environmental performance of a

particular SHS operated in a household in Germany related to one
resident. The FUwas defined as “providing the service of energymanage-
ment in a residence for one resident over the period of one year”. Based
on the analyses of an average SHS in Germany (Pohl et al., 2021), we
include a total of 10 components into the SHS product system. Definition
of product system, systemboundaries and study scope is taken from Pohl
et al. (2021). Environmental impacts from the production of SHS devices
are only included in the assessment if the devices were newly acquired.
As in Pohl et al. (2021), we use the smart device control unit “X1” as a
weight-based proxy device for all components of the SHS.

3.3.2. Inventory analysis & impact assessment
We used GaBi LCA software and the GaBi database Service Pack 39.

The majority of our inventory data is adopted from Pohl et al. (2021),
where further details on technical data (weight, load) of the different
components of the SHS can be found. We assumed that all devices run
2 h per day under full load and 22 h per day under standby (IEA 4E,
2019). For average savings of heating energy through the energy man-
agement function of the SHS we assumed 4% of the household's annual
heating energy demand (Rehm et al., 2018). This assumption was nec-
essary because we did not have access to the energy consumption
data of each SHS user. Calculation of the annual heating energy demand
of each household was based on housing specifics from the online sur-
vey using the approach by Pohl et al. (2021). We provide results for
the impact categories Climate Change (GWP, ReCiPe 2016 v1.1 (H)),
and Metal Depletion (MDP, ReCiPe 2016 v1.1 (H)).

3.4. Statistical analysis

We statistically analysed relationships between the online survey
data and LCA results for GWP and MDP using multiple regression anal-
ysis to predict LCA results by sociodemographic data and user motiva-
tion. We performed a per capita analysis. For this purpose, we had to
convert some values from the data for the entire household for respon-
dents living in a multi-person household. This concerned income, living
space and the number of devices in the SHS. To increase the comparability
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of results across the study, we weighted the corresponding values per
person depending on their age (as opposed to equally weighting all per-
sons in the household), following the approach of Kleinhückelkotten
(2016). The respondent was included in the calculation with a factor of
1, other household members at the age of 18 and older with a factor of
0.5, and household members younger than 18 with a factor of 0.3.

4. Results

First in this section, we describe the SHS composition and housing
specifics per capita of our sample. Second, we present per capita results
on the environmental performance of the SHS for the impact categories
GWP andMDP. Third, we analyse towhat extent sociodemographic fac-
tors of the sample and different usermotivesmay play a role in environ-
mental performance.

4.1. The SHS sample

The compositions of our sample's 375 SHS and related use-specific
modelling parameters (see Fig. 1) such as number of devices in the
SHS, acquisition of devices, type of connection and housing specifics
are described on a per capita basis. See Table 2 for an overview.

Based on our sample, the SHS consists of a total of M (SD) = 4.79
(2.45) components per capita on average. The smart heating compo-
nent is always included, as it was a precondition for being included in
the sample, followed by control unit and smart plug. A central switch
is the least frequently present. Almost 3% of our sample report that
their SHS is composed of 10 different components, while 8% state that
their SHS consists only of the smart heating component. Since different
components are present several times in the same system, the SHS con-
sists of a total of M (SD) = 7.52 (5.27) devices per capita on average.
Both the maximum value of 34 devices per capita and the minimum
value of 0.40 devices per capita are indicated once. The latter value
comes about when the SHS is composed of only a few devices while
there are more (weighted) people than SHS devices in the household.
In most cases (63%) all devices were newly purchased. In some cases,
parts of the SHS were already installed (30%), and in others, the entire
set of devices was present and no new devices had to be purchased
(7%). In most cases (83%), WiFi is the prevailing communication stan-
dard. See Table S2, supplementary material 1 for a detailed overview.

Average heating temperature of our sample is reported atM (SD) =
19.4 (1.37) degrees Celsius. The maximum heating temperature of
24 degrees Celsius is stated twice and theminimum value of 16 degrees
Celsius is stated four times. Themajority of SHSusers live in a 1–2 family
home (62%). Considerably fewer people (38%) indicate that they live in
an apartment in a building with 3 or more apartments. A total of 235
Table 2
Description of average smart home composition and housing sp

Average smart home 
composi�on

No. of devices 
M (SD) Housing spe

Radiator thermostat 2.4 (1.4) Hea�ng tem

Humidity sensor 0.8 (1.5) Living space

Door/window sensor 0.5 (0.9)

House typeMo�on sensor 0.6 (0.9)

(Security) Camera 0.4 (0.7)

Smoke detector 0.9 (1.3)

Hea�ng ene

Wireless intercom system 0.2 (0.4)

Smart plug 0.8 (1.2)

Switch 0.3 (0.6)

Control unit 0.5 (0.4)
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people (63%) state that they are the owner of the house or apartment.
The average per capita living space is reported at 66.3 (SD = 23.43) m2.
Both the maximum living space per capita of 210 m2 and the minimum
value of 20 m2 per capita are indicated once. The distribution by heating
system is more complex. We distinguish type of heating system both by
power (< 20 kW in 1–2 family homes, 20–120 kW in apartment houses)
and by heating fuel. According to the sample, both 1–2 family homes and
apartments are predominantly heated with gas (60% of family homes,
53% of apartments) and oil (19% of family homes, 18% of apartments).

4.2. Environmental performance of the SHS

The environmental performance results of our sample's 375 SHS are
depicted in Fig. 2 and in Table S3, supplementary material 1.

For GWP, the environmental performance of the SHS varies widely
from −991 kg CO2 eq and 804 kg CO2 eq per capita per year. For a
slight majority of cases (55%), having an SHS that contains smart
heating leads to overall reductions (M(SD) = −35 (240) kg CO2 eq
per capita). However, there are large differences between the different
fractions that make up the overall environmental performance and
these are strongly tied to variances in user behaviour: (i): Life cycle
effects: SHS production and operation sums up to M(SD) = 80 kg
(24) CO2 eq per capita. Slightly more than half of this is accounted for
by production and operation of smart heating components and SHS in-
frastructure; the remaining is accounted for by the presence of other
components in the SHS. There are large differences within the sample,
depending on the number of devices present, i.e. size of the SHS. (ii)
Heating optimisation: according to our model, the application of smart
heating control always leads to savings (M(SD) = −104 (43) kg CO2

eq per capita). The differences in the absolute amount of heating
energy saved depend on the size of the living space. The larger the
living space, the greater the absolute savings potential. (iii) Heating
behaviour: Variances in heating behaviour also lead to changes in
heating energy demand. There are slightly lower heating
temperatures on average in the SHS sample compared to the control
group, leading to small overall savings on average (M(SD) = −11
(237) kg CO2 eq per capita). However, differences in heating
temperature are far greater, as can be seen from the high standard
deviation, suggesting very large differences in individual heating
behaviour. To sum up, our results for net savings for GWP show that al-
most 77% of an SHS's technical saving potential is equalised by produc-
tion and operation of the SHS. Furthermore, heating behaviour has a
great influence on environmental performance for GWP.

For MDP, the environmental impact is above zero on average
(M(SD) = 0.97 (0.8) kg CU eq per capita), which means that the
introduction of an SHS poses an additional environmental burden
ecifics per capita.

cifics

perature M (SD) 19.4 (1.37) °C

 M (SD) 66.3 (23.43) m2 per capita

61.6% 1-2 family home 

37,9% apartment 

0.5% other 

rgy source

58.9% gas 

19.2% oil

11.0% electricity

7.1% other (e.g. district hea�ng)

3.8% solid fuel



Fig. 2. Boxplot Environmental performance SHS per resident for GWP (left) and MDP (right).
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for 98% of our sample. This is due to MDP originating almost solely
from material input and production. Minimal reductions of MDP
are due to heating optimisation and heating behaviour changes.
However, the saving effects for MDP are very small and are not
considered significant. For 2% of our cases (N = 9), the introduc-
tion of the SHS still lead to an overall reduction in MDP. These re-
ductions are due to the fact that these participants reported that
all devices connected to the SHS were already in place when the
SHS was commissioned, thus the environmental effects from mate-
rial input and production of these devices was not included in the
impact of the SHS. Furthermore, these participants also reported
very low heating temperatures, leading to minimal reductions of
MDP from overall heating energy demand. To sum up, for MDP
the composition and size of the SHS is decisive for the environ-
mental assessment, and effects from heating behaviour and
heating optimisation do not play a significant role.

Our results furthermore show the influence of various other factors
that can be directly or indirectly related to user decisions. Whether de-
vices of the SHSwere already in place orwere purchased specifically can
have an impact on the SHS's overall environmental impact, especially
833
forMDP. According to our sample, forMDP, life cycle effects are reduced
by 46% for users incorporating existing equipment into their SHS. For
GWP, this intervention results in a reduction in life cycle effects of 23%
on average. Moreover, as already pointed out, size of living space plays
a key role in the environmental assessment here. On the one hand, it
can be observed that the larger the living space, the larger the life
cycle effects for GWP and MDP and thus the environmental impact for
MDP. On the other hand, the larger the living space, the greater are
the savings from smart heating, and the stronger the effects from
heating behaviour for GWP. However, since heating behaviour can con-
tribute to the overall reduction of heating energy demand as well as to
its increase, no clear association for the influence of living space on
the overall environmental impact for GWP can be identified. For exam-
ple, for the most commonly reported per capita living space of 60 m2,
the assessment results for GWP range from −504 to 560 kg CO2 eq. In
summary, we find significant differences in the characteristics of the
SHS and resulting environmental impact that can be traced back to var-
iances in user behaviour (i.e. choice of products as well as heating be-
haviour) and housing specifics (i.e. living space). This can also be seen
in the large standard deviations for both GWP and MDP.
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4.3. Linking environmental performance to user's lifestyle and intention

We further investigate whether the environmental effects from pro-
ducing andoperating the SHS aswell as the environmental performance
of the SHS can be explained with sociodemographic information and/or
user motivation.

Multiple regression analysis (Table 3) shows that a higher level of in-
come predicts higher environmental life cycle effects from producing
and operating the SHS (β = 0.24 for GWP, β = 0.21 for MDP). We
also found a gender effect, shown by higher environmental effects
among male users (β = 0.11 for GWP, β = 0.18 for MDP). For GWP,
also age predicts higher life cycle effects (β = 0.13). In addition, the
higher the user motives technology enthusiasm (β = 0.17 for GWP,
β = 0.17 for MDP), and security (β = 0.26 for GWP, β = 0.25 for
MDP), the higher the life cycle effects from producing and operating
the SHS. Education level, energy saving and consumerism motives did
not predict life cycle effects for GWP or MDP.

Next, we investigate the relationship with regards to overall envi-
ronmental impact of the SHS. Similar to the above analysis for MDP,
the multiple regression model (Table 4) shows that the environmental
impact of the SHS forMDP can be explained by income (β=0.22), gen-
der (β=0.17) and by user motives technology enthusiasm (β=0.18),
and security (β=0.24). Again, the greater the income or the higher the
technology enthusiasm and security motives, the higher the environ-
mental burden of the SHS forMDP. This is not surprising, as the environ-
mental impact forMDP is dominated by the production phase. Thus, the
SHS size is equally decisive for its environmental impact. Age, education
level, energy saving and consumerismmotives did not predictMDP. The
picture is somewhat different for the environmental performance for
GWP. The multiple regression model (Table 4) shows that the environ-
mental performance of the SHS for GWP can be predicted by the user
motives consumerism (β = 0.17), energy-saving (β = −0.19) and se-
curitymotivation (β=0.14). This means that the higher the consumer-
ism and security motive, the higher the environmental impact of the
SHS for GWP, i.e. the lower the net savings from heating energy optimi-
sation. The higher the energy-savingmotivation, the better the environ-
mental performance for GWP, i.e. the higher the net savings. We also
found a gender effect, shown by higher environmental impact among
female users (β=−0.13). Thismay be becausewomen reported higher
room temperatures. In contrast to the above analyses, income did not
predict the environmental impact for GWP.

Finally, we analyse the relationship between GWP from overall
(optimised) heating energy demand and socioeconomic characteristics
and user motivation to contextualise our results. Our results (Table 5)
show that the size of living space can be explained by income (β =
0.48) and age (β= 0.12). This means that, according to our sample, the
higher the income and the older the user, the larger the living space.
We also found a gender effect, shown by larger living space among
Table 3
Regression analysis: Environmental effects from SHS production and operation for GWP & MD

Production and operation SHS

GWP

B SE β t p

Socioeconomic information
Age 0.495 0.201 0.125 2.463 0.014
Gender (1 female, 2 male) 12.493 5.774 0.11 2.164 0.031
Education 1.533 1.81 0.042 0.847 0.398
Income share 0.015 0.003 0.237 4.737 3.21e

User Motivation
Energy-saving −1.381 4.015 −0.022 −0.344 0.731
Consumerism −2.602 2.519 −0.065 −1.033 0.302
Technology enthusiasm 11.845 4.627 0.169 2.560 0.011
Security 11.951 2.763 0.259 4.325 2.01e

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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female users (β= −0.11). Secondly, also for overall heating energy de-
mand in householdswith smart heating, we found that the higher the in-
come, the larger the GWP from overall heating energy demand (β =
0.44). Again, we found a gender effect, shown by higher environmental
effects among female users (β = −0.13). This may be because women
reported larger living space per resident. User motivation did not predict
living space or heating energy demand. Bringing these results together
with our analysis of environmental performance of SHS, we can conclude
that SHS environmental performance for GWP is rather driven by user
motivation and that income does not play a decisive role. However, in-
come remains the most important predictor of the level of GWP from
overall household heating energy demand.

5. Discussion

In the following section, we discuss our key findings with regard to
certain modelling aspects and deduce implications for research and
practice.

5.1. The complex role of user behaviour in the smart home

Our key findings point to the complex role of user behaviour in the
smart home. As our results for GWP show, having smart heating does
not lead to significant benefits on average, though neither does it repre-
sent an additional burden. However, in certain cases, having smart
heating can lead to large savings or additional burden. For MDP, having
an SHS is always an additional burden, as heating optimisation has al-
most no reduction potential for MDP. Depending on the impact cate-
gory, both number of devices of the SHS as well as heating
temperature are decisive for the overall results. Both parameters de-
scribe user behaviour in the smart home, on the one hand with regard
to choice of products and on the otherwith regard to heating behaviour.
As can be seen from the high standard deviations of our results, these
sometimes considerably vary within our sample, suggesting very het-
erogeneous user behaviour. This also becomes apparent from detailed
analysis of the individual results of the sample, which, for GWP for ex-
ample, sometimes show very high saving effects, but sometimes also
high additional burden – depending on heating temperatures and the
number of devices in the SHS. It can thus be seen that, above all, vari-
ances in heating behaviour are crucial for the overall results. However,
if the use parameters to be included in the LCA are not sufficiently vali-
dated and cannot be contextualised, as we have done herewith the help
of descriptive statistics, the uncertainty of the results may increase.
Overall, our findings confirm that the inclusion of user behaviour into
an LCA could be a potential source of uncertainty (Baustert and
Benetto, 2017; Miller and Keoleian, 2015) that should be analysed in a
methodologically appropriate way. Accordingly, the default scenario
for user behaviour assumed in the modelling should be well justified.
P, socioeconomic information and user motivation.

MDP

B SE β t p

⁎ 5.97e-03 3.119e-03 0.098 1.912 0.057 .
⁎ 3.08e-01 8.971e-02 0.176 3.435 0.0007 ⁎⁎⁎

3.57e-02 2.813e-02 0.063 1.269 0.205
-06 ⁎⁎⁎ 2.14e-04 5.018e-05 0.215 4.254 2.72e-05 ⁎⁎⁎

−3.80e-02 6.24e-02 −0.039 −0.609 0.543
−4.71e-02 3.91e-02 −0.07 −1.204 0.229

⁎ 1.88e-01 7.19e-02 0.167 2.501 0.013 ⁎

-05 ⁎⁎⁎ 1.75e-01 4.29e-02 0.246 4.073 5.79e-05 ⁎⁎⁎



Table 4
Regression analysis: Environmental performance SHS for GWP & MDP, socioeconomic information and user motivation.

Environmental performance SHS

GWP MDP

B SE β t p B SE β t p

Socioeconomic information
Age −0.300 1.024 −0.016 −0.293 0.769 5.83e-03 3.09e-03 0.097 1.886 0.06018 .
Gender (1 female, 2 male) −71.052 29.437 −0.131 −2.414 0.016 ⁎ 2.93e-01 8.90e-02 0.169 3.292 0.00110 ⁎⁎

Education −3.721 9.229 −0.021 −0.403 0.687 3.18e-02 2.80e-02 0.057 1.139 0.25556
Income share 0.022 0.016 0.071 1.323 0.187 2.13e-04 4.98e-05 0.216 4.282 2.42e-05 ⁎⁎⁎

User Motivation
Energy-saving −56.835 20.470 −0.188 −2.777 0.006 ⁎⁎ −5.96e-02 6.19e-02 −0.062 −0.964 0.336
Consumerism 35.074 12.842 0.169 2.731 0.007 ⁎⁎ −3.40e-02 3.88e-02 −0.051 −0.876 0.382
Technology enthusiasm 25.201 23.589 0.076 1.068 0.287 1.91e-01 7.13e-02 0.179 2.683 0.008 ⁎⁎

Security 31.196 14.089 0.142 2.214 0.027 ⁎ 1.70e-01 4.26e-02 0.242 4.003 7.71e-05 ⁎⁎⁎

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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It becomes apparent that size of living space, another factor related to
the user, plays a central role in our analysis, even though it is outside the
product system. This is because living space is a key parameter for deter-
mining heating energy demand, which is the service's application area.
From this it follows that other factors related to the userwhich are clearly
outside the LCAmodel can nevertheless have an indirect influence on the
environmental assessment results. With regard to the inclusion of vari-
ances in user behaviour, attention should therefore also be paid to use-
specific factors from the individual services' application areas.

Furthermore, our investigation on the linkages between environmen-
tal performance of SHS, sociodemographics and user motivation shows
that it is not possible to clearly answer whether income or user motiva-
tion have more explanatory power. In our study, we find both motives
(technology enthusiasm, security) and socioeconomic factors (income)
that aremore likely to be associatedwith increased energy and resources
demand as a predictor for the level of environmental impact due to the
size of the SHS. For the environmental performance for GWP, we find
no significant relation with income, indicating that GWP is independent
from their user's level of purchasing power. However, we find a positive
relation with consumerism and security motives, and a negative relation
with the energy-saving motive. Thus, our results show that a general
analysis of the environmental advantages and disadvantages of an SHS
is not helpful; it should be much more focused, e.g. on specific user
groups. User characteristics should also be considered when deducing
recommendations for policy and practice, for example by explaining the
context of use, showing limits of scalability or defining specific target
groups. The positive relation of the environmental performance for
GWP with consumerism and security motives, and negative relation
with the energy-savingmotive implies, for example, that the GWP reduc-
tion potential of smart heating is only realised if users are motivated to
save energy. Since this pro-environmental value orientation only applies
to a small part of the population, see e.g. a study onmarket share of green
products in Germany (Steinemann et al., 2017), this clearly shows the
Table 5
Regression analysis GWP of heating energy demand, living space, socioeconomic information a

GWP of heating energy demand

B SE Β t

Socioeconomic information
Age 7.50 4.254 0.090 1.763
Gender (1 female, 2 male) −316.26 122.33 −0.132 −2.585
Education −13.61 38.352 −0.017 −0.355
Income share 0.603 0.068 0.442 8.816

User motivation
Energy-saving −127.04 85.065 −0.095 −1.493
Consumerism 23.70 53.365 0.026 0.444
Technology enthusiasm 57.672 98.028 0.039 0.588
Security 42.150 58.549 0.043 0.720

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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limits of scalability. The countervailing high consumption and security
motives show another aspect of the limits of scalability. According to
our analysis this is mainly due to higher device purchases when security
motives are high. These limits could be overcome by implementing en-
ergy sufficiency strategies (e.g. Best et al., 2022) that are independent of
user motivation. For example, policy makers could implement incentive
structures that promote energy saving independently of environmental
motives, for example through sustainability-oriented pricing policy. Fur-
ther, developers could design SHS that help users save energy regardless
of their use intentions (e.g., by energy saving default settings). We also
find that income (explainable by living space) largely determines the
level of overall (optimised) heating energy consumption per resident.
This shows the general limitations of the energy saving potential through
smart heating, which are independent of whether the user intends to
save energy or not.

Our findings replicate findings that energy savings are only realised
if an energy-saving motive is given as shown by Henn et al. (2019) for
smart metering devices and tie in with a strand of consumer research
showing that affluence is by far the strongest determinant for environ-
mental (and social) impacts from consumption (Jones and Kammen,
2011; Wiedmann et al., 2020). Further, our findings relate to research
on sufficiency measures in the heating sector showing that the neces-
sary GWP reductions from the residential sector to tackle climate
change can only be achieved if the living space per person is also signif-
icantly reduced (Cordroch et al., 2021; Lorek and Spangenberg, 2019).

5.2. Strength and limitations

We carefully defined our FU to allow secondary effects of product
use (i.e. variances in size of the SHS and in heating behaviour) to be in-
cluded in the modelling while ensuring comparability of results. This
means that to maintain the variability and comparability of the defini-
tion of the product system in use, we refer to the service provided (i.e.
nd user motivation.

Living space

p B SE β t p

0.079 0.222 0.090 0.121 2.474 0.014 ⁎

0.010 ⁎ −5.797 2.581 −0.110 −2.246 0.025 ⁎

0.723 −1.191 0.809 −0.070 −1.472 0.142
< 2e-16 ⁎⁎⁎ 0.014 0.001 0.482 10.002 < 2e-16 ⁎⁎⁎

0.136 −1.824 1.795 −0.062 −1.016 0.310
0.657 −1.057 1.126 −0.052 −0.939 0.348
0.557 2.162 2.068 0.067 1.045 0.297
0.472 1.711 1.235 0.080 1.385 0.167
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energy management) instead of the product itself. To integrate intensi-
fication of use into the LCA, we relate the provision of energy manage-
ment to time. Further, we have adopted a consumption-based
approach (see Sala et al., 2019, p. 11), i.e. we allocate environmental ef-
fects from service provision to the final consumer. This decision results
from the crucial role that size of living space plays in heating energy de-
mand. We have also tested alternatives to the consumption-based ap-
proach, namely relating the service provision relatively per m2 or per
household. However, we decided to apply the consumption-based ap-
proach, because the first alternative did not take into account all deci-
sive user-specific influences (namely, the different sizes of living
space), and the second alternative did not allow for comparability of re-
sults due to different household sizes.

Many of the modelling decisions in our study are based on our sur-
vey data, e.g. definition of product system, information on heating be-
haviour, and information on housing specifics. Online surveys,
especially when administered by professional panel institutes as in
our study, provide convenient and time- and money-saving recruit-
ment. On the other hand, this approach comeswith possible limitations
in data quality due to self-reported behaviour for these data. Ap-
proaches for data collection that would improve data quality include
in-house interviews or living laboratory studies. The latter would offer
the possibility of combining the data collection with energy consump-
tion measurements, for example using smart metering. Another limita-
tion is that our sample consists only of SHS users with smart heating, so
we cannot make any general conclusions about the various other SHS
types on the market. The sociodemographic characteristics and user
motivations in our sample are specific to SHS users with smart heating
functions in Germany. As no statistical information on the socio-
demographical constitution of this population group was available, we
did not set quotas for age, income, education level, or gender and there-
fore the sample is by nature not generalisable to theGermanpopulation.
Another limitation in terms of generalisability of the results is that smart
home users can be described as ‘early adopters’. These are characterised
by, among other things, being better informed, having a higher income
and seeing a greater benefit from the adoption compared to mass mar-
ket adopters (Wilson et al., 2017).

Limitations of our LCA include the use of a proxy device for all de-
vices in the SHS, setting the service life for all devices to five years,
and a cradle-to-use modelling approach. In particular, by using a
proxy device for all appliances, we were not able to capture the choice
of different products in terms of energy and resource efficiency. In addi-
tion, we also had to make an assumption regarding the relative optimi-
sation of heating energy through smart heating. Here we decided to
make a conservative assumption, based on a study that had actually col-
lected measured data on heating behaviour. Other studies assume
higher optimisation potentials for smart heating, but these assumptions
are theory-based and a transfer into practice is unclear. Since both pro-
duction and operation of the SHSdevices aswell as heating optimisation
are crucial for the final results, aswe show for GWP andMDP,more pre-
cise data would presumably lead to the reduction of eventual uncer-
tainties. Nevertheless, the more exact modelling would be
significantly more time-consuming, so that questions of effort and ben-
efit would justifiably arise.

In general, with our study we were able to emphasise the impor-
tance of a life cycle approach. We have only presented our results
for the impact categories MDP and GWP. However, we were able
to show that applying ICT-based services with the goal to reduce
processes' energy demand leads to a shift in environmental burden
between the impact categories, replicating findings from Cerdas
et al. (2017), Ipsen et al. (2019), and Pohl et al. (2021). For impact
categories with regional or local impact (e.g. acidification or
ecotoxicity), this means that there may also be shifts with regards
to affected areas. It is urgently necessary to investigate the influ-
ence of digital process optimisation and the role played by user be-
haviour on other impact categories as well.
836
5.3. Implications for research and practice

For the integration of user behaviour in an LCA, our study highlights
the advantages of an interdisciplinary approach to LCA method devel-
opment, data collection and analysis. By applying an interdisciplinary
concept of how user behaviour and environmental performance of
products are linked, it can be ensured that user behaviour in an LCA is
addressed in a scientifically sound way. An interdisciplinary approach
is also helpful for data collection, as it enables the extensive collection
of primary behavioural data and hence enhances the study's informa-
tive value. Finally, the joint analysis of environmental assessment re-
sults, corresponding sociodemographic information and user motives
provides an innovative approach to contextualise LCA results and
trends. Based on this, options for action can be identified or certain pol-
icy measures can be validated, e.g. for certain target groups. These
groups could be, for example as we have done here, based on their mo-
tives, e.g. energy saving, consumption, or security. For these groups, en-
vironmentally relevant aspects in choice of products and product use
could be described. Vice versa, the findings help focus on impactful tar-
get behaviours in environmental psychology. Future research should
build on this and further explore the links between environmental as-
sessment and user characteristics, user behaviour, or user expectations
from the perspective of environmental psychology, science and technol-
ogy studies or social practice theory. In addition to the socio-
demographics and user motives considered here, these can also
include user characteristics such as pro-environmental behaviour
(Moser and Kleinhückelkotten, 2018), user adoption of technological
innovations (Hargreaves et al., 2018), the social situation or the basic
value orientation of users (Gröger et al., 2011). The quantitative mea-
surement of pro-environmental behaviour is especially promising for
an appliance in more realistic LCA scenarios (Polizzi di Sorrentino
et al., 2016). The measurement of impact-relevant behaviour has a
long tradition in environmental psychology, can be challenging and
complex, and needs to be developed context-dependently depending
on the behavioural domain (for a thorough discussion see Lange and
Dewitte (2019)). The identification and characterisation of specific
user groups (Sütterlin et al., 2011)would also be valuable in order to ad-
dress their group-specific needs in the housing sector in amore energy-
sufficient way rather than increasing dependency on resource-intense
technology. Depending on themethodological approach and the sector,
these user-driven parameters can be assessed using a broad set of quan-
titativemethods (e.g., surveys to collect primary data on individual con-
sumption behaviour), as in this study, or qualitative methods
(e.g., interviews to explore the reasons and rationales behind certain
user behaviour), as suggested for example by Suski et al. (2021). All in
all, we identified great potential for fruitful collaboration of LCA re-
searchers with the disciplines of and environmental psychology and
the social sciences.

For practice, our study highlights the importance of keeping the
SHS as small and long-lasting as possible, i.e. minimise system ex-
pansion beyond energy management devices and, if possible, inte-
grate existing devices into the SHS. In this way, the environmental
impacts associated with material input are kept as low as possible,
and the technical saving potential for GWP can be maximised. For
GWP, special attention should be paid to heating temperature set-
tings, since these have a great effect on the overall environmental
performance. Furthermore, the extent of actual GWP savings de-
pends on the technical savings potential of the SHS. This shows,
once more, that there is a need for a standard specifying technical re-
quirements of an SHS. In order to ensure maximum energy savings
effects of the SHS, the focus of the standard should be on energy
management and define energy-saving default settings. When
considering the scalability of individual study results, it should be
considered that some of them depend significantly on socio-
demographics and/or user motivation and thus only apply to certain
user groups.
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6. Conclusions

With our study, we investigated the impact of variances in user be-
haviour on environmental performance of ICT-based services. The con-
tribution of this study is twofold: First, we have shown that the
integration of user behaviour in LCA, i.e. how and in which quantities
products are used, can have a major impact on environmental assess-
ment results for ICT-based services. For the environmental performance
of SHS we find that, for MDP, smart heating is always an additional bur-
den, mainly stemming from resource demand and production of the
SHS. It follows that the composition and size of the SHS (i.e. choice of
products) is crucial for overall MDP. For GWP, we find that having
smart heating does not lead to significant benefits for GWP on average,
but can lead to large savings or additional burden in certain cases. This is
particularly dependent on both the number of devices of the SHS (i.e.
choice of products) and heating temperature (i.e. heating behaviour).
Another factor that is indirectly related to user behaviour and has an im-
pact on the environmental assessment result for GWP is the size of the
living space. Second, we have demonstrated that both user motives and
sociodemographic characteristics have strong effects on the actual out-
comes of the analysis for GWP and MDP saving potentials. Thus, com-
bining LCA results with user-specific information beyond mere
product use data canmake an important contribution to analysis, for ex-
ample by classifying results, identifying target groups or showing limits
to scalability. However, for consistent inclusion of user behaviour
throughout all phases of an LCA study, it is important first to consider
the potential influence of user behaviour when defining goal and
scope. In particular, the definition of a FU decides how extensively
user behaviour can be integrated into environmental modelling. Future
research should expand interdisciplinary collaboration of LCA re-
searchers with the disciplines of environmental psychology and the so-
cial sciences. Implications for practice include measures for sustainable
design of SHS.
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